Papers
Topics
Authors
Recent
2000 character limit reached

3D-OGSE: Online Safe and Smooth Trajectory Generation using Generalized Shape Expansion in Unknown 3-D Environments

Published 27 May 2020 in cs.RO | (2005.13229v6)

Abstract: In this paper, we present an online motion planning algorithm (3D-OGSE) for generating smooth, collision-free trajectories over multiple planning iterations for 3-D agents operating in an unknown obstacle-cluttered 3-D environment. Our approach constructs a safe-region, termed 'generalized shape', at each planning iteration, which represents the obstacle-free region based on locally-sensed environment information. A collision-free path is computed by sampling points in the generalized shape and is used to generate a smooth, time-parametrized trajectory by minimizing snap. The generated trajectories are constrained to lie within the generalized shape, which ensures the agent maneuvers in the locally obstacle-free space. As the agent reaches boundary of 'sensing shape' in a planning iteration, a re-plan is triggered by receding horizon planning mechanism that also enables initialization of the next planning iteration. Theoretical guarantee of probabilistic completeness over the entire environment and of completely collision-free trajectory generation is provided. We evaluate the proposed method in simulation on complex 3-D environments with varied obstacle-densities. We observe that each re-planing computation takes $\sim$1.4 milliseconds on a single thread of an Intel Core i5-8500 3.0 GHz CPU. In addition, our method is found to perform 4-10 times faster than several existing algorithms. In simulation over complex scenarios such as narrow passages also we observe less conservative behavior.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.