Papers
Topics
Authors
Recent
2000 character limit reached

Stolarsky's invariance principle for finite metric spaces

Published 26 May 2020 in math.CO, cs.IT, math.IT, and math.MG | (2005.12995v4)

Abstract: Stolarsky's invariance principle quantifies the deviation of a subset of a metric space from the uniform distribution. Classically derived for spherical sets, it has been recently studied in a number of other situations, revealing a general structure behind various forms of the main identity. In this work we consider the case of finite metric spaces, relating the quadratic discrepancy of a subset to a certain function of the distribution of distances in it. Our main results are related to a concrete form of the invariance principle for the Hamming space. We derive several equivalent versions of the expression for the discrepancy of a code, including expansions of the discrepancy and associated kernels in the Krawtchouk basis. Codes that have the smallest possible quadratic discrepancy among all subsets of the same cardinality can be naturally viewed as energy minimizing subsets in the space. Using linear programming, we find several bounds on the minimal discrepancy and give examples of minimizing configurations. In particular, we show that all binary perfect codes have the smallest possible discrepancy.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.