Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Bilevel Cutting-plane Algorithm for Solving Cardinality-constrained Mean-CVaR Portfolio Optimization Problems (2005.12797v3)

Published 26 May 2020 in math.OC

Abstract: This paper studies mean-risk portfolio optimization models using the conditional value-at-risk (CVaR) as a risk measure. We also employ a cardinality constraint for limiting the number of invested assets. Solving such a cardinality-constrained mean-CVaR model is computationally challenging for two main reasons. First, this model is formulated as a mixed-integer optimization (MIO) problem because of the cardinality constraint, so solving it exactly is very hard when the number of investable assets is large. Second, the problem size depends on the number of asset return scenarios, and the computational efficiency decreases when the number of scenarios is large. To overcome these challenges, we propose a high-performance algorithm named the \emph{bilevel cutting-plane algorithm} for exactly solving the cardinality-constrained mean-CVaR portfolio optimization problem. We begin by reformulating the problem as a bilevel optimization problem and then develop a cutting-plane algorithm for solving the upper-level problem. To speed up computations for cut generation, we apply to the lower-level problem another cutting-plane algorithm for efficiently minimizing CVaR with a large number of scenarios. Moreover, we prove the convergence properties of our bilevel cutting-plane algorithm. Numerical experiments demonstrate that, compared with other MIO approaches, our algorithm can provide optimal solutions to large problem instances faster.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube