Papers
Topics
Authors
Recent
Search
2000 character limit reached

The localization number of designs

Published 26 May 2020 in math.CO and cs.DM | (2005.12780v1)

Abstract: We study the localization number of incidence graphs of designs. In the localization game played on a graph, the cops attempt to determine the location of an invisible robber via distance probes. The localization number of a graph $G$, written $\zeta(G)$, is the minimum number of cops needed to ensure the robber's capture. We present bounds on the localization number of incidence graphs of balanced incomplete block designs. Exact values of the localization number are given for the incidence graphs of projective and affine planes. Bounds are given for Steiner systems and for transversal designs.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.