Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Localization game on geometric and planar graphs (1709.05904v2)

Published 18 Sep 2017 in math.CO and cs.DM

Abstract: The main topic of this paper is motivated by a localization problem in cellular networks. Given a graph $G$ we want to localize a walking agent by checking his distance to as few vertices as possible. The model we introduce is based on a pursuit graph game that resembles the famous Cops and Robbers game. It can be considered as a game theoretic variant of the \emph{metric dimension} of a graph. We provide upper bounds on the related graph invariant $\zeta (G)$, defined as the least number of cops needed to localize the robber on a graph $G$, for several classes of graphs (trees, bipartite graphs, etc). Our main result is that, surprisingly, there exists planar graphs of treewidth $2$ and unbounded $\zeta (G)$. On a positive side, we prove that $\zeta (G)$ is bounded by the pathwidth of $G$. We then show that the algorithmic problem of determining $\zeta (G)$ is NP-hard in graphs with diameter at most $2$. Finally, we show that at most one cop can approximate (arbitrary close) the location of the robber in the Euclidean plane.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.