Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bounds on the localization number

Published 13 Jun 2018 in math.CO and cs.DM | (1806.05286v4)

Abstract: We consider the localization game played on graphs, wherein a set of cops attempt to determine the exact location of an invisible robber by exploiting distance probes. The corresponding optimization parameter for a graph $G$ is called the localization number and is written $\zeta (G)$. We settle a conjecture of \cite{nisse1} by providing an upper bound on the localization number as a function of the chromatic number. In particular, we show that every graph with $\zeta (G) \le k$ has degeneracy less than $3k$ and, consequently, satisfies $\chi(G) \le 3{\zeta (G)}$. We show further that this degeneracy bound is tight. We also prove that the localization number is at most 2 in outerplanar graphs, and we determine, up to an additive constant, the localization number of hypercubes.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.