Papers
Topics
Authors
Recent
2000 character limit reached

Experimental evaluation of quantum Bayesian networks on IBM QX hardware

Published 26 May 2020 in quant-ph, cs.AI, and cs.ET | (2005.12474v1)

Abstract: Bayesian Networks (BN) are probabilistic graphical models that are widely used for uncertainty modeling, stochastic prediction and probabilistic inference. A Quantum Bayesian Network (QBN) is a quantum version of the Bayesian network that utilizes the principles of quantum mechanical systems to improve the computational performance of various analyses. In this paper, we experimentally evaluate the performance of QBN on various IBM QX hardware against Qiskit simulator and classical analysis. We consider a 4-node BN for stock prediction for our experimental evaluation. We construct a quantum circuit to represent the 4-node BN using Qiskit, and run the circuit on nine IBM quantum devices: Yorktown, Vigo, Ourense, Essex, Burlington, London, Rome, Athens and Melbourne. We will also compare the performance of each device across the four levels of optimization performed by the IBM Transpiler when mapping a given quantum circuit to a given device. We use the root mean square percentage error as the metric for performance comparison of various hardware.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.