Papers
Topics
Authors
Recent
2000 character limit reached

Attention-based Neural Bag-of-Features Learning for Sequence Data (2005.12250v1)

Published 25 May 2020 in cs.LG and cs.CV

Abstract: In this paper, we propose 2D-Attention (2DA), a generic attention formulation for sequence data, which acts as a complementary computation block that can detect and focus on relevant sources of information for the given learning objective. The proposed attention module is incorporated into the recently proposed Neural Bag of Feature (NBoF) model to enhance its learning capacity. Since 2DA acts as a plug-in layer, injecting it into different computation stages of the NBoF model results in different 2DA-NBoF architectures, each of which possesses a unique interpretation. We conducted extensive experiments in financial forecasting, audio analysis as well as medical diagnosis problems to benchmark the proposed formulations in comparison with existing methods, including the widely used Gated Recurrent Units. Our empirical analysis shows that the proposed attention formulations can not only improve performances of NBoF models but also make them resilient to noisy data.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.