Papers
Topics
Authors
Recent
Search
2000 character limit reached

Interaction-Aware Trajectory Prediction of Connected Vehicles using CNN-LSTM Networks

Published 25 May 2020 in cs.RO | (2005.12134v2)

Abstract: Predicting the future trajectory of a surrounding vehicle in congested traffic is one of the basic abilities of an autonomous vehicle. In congestion, a vehicle's future movement is the result of its interaction with surrounding vehicles. A vehicle in congestion may have many neighbors in a relatively short distance, while only a small part of neighbors affect its future trajectory mostly. In this work, An interaction-aware method which predicts the future trajectory of an ego vehicle considering its interaction with eight surrounding vehicles is proposed. The dynamics of vehicles are encoded by LSTMs with shared weights, and the interaction is extracted with a simple CNN. The proposed model is trained and tested on trajectories extracted from the publicly accessible NGSIM US-101 dataset. Quantitative experimental results show that the proposed model outperforms previous models in terms of root-mean-square error (RMSE). Results visualization shows that the model is able to predict future trajectory induced by lane change before the vehicle operate obvious lateral movement to initiate lane changing.

Citations (51)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.