Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vision-based control of a knuckle boom crane with online cable length estimation (2005.11794v2)

Published 24 May 2020 in cs.RO, cs.CV, cs.SY, and eess.SY

Abstract: A vision-based controller for a knuckle boom crane is presented. The controller is used to control the motion of the crane tip and at the same time compensate for payload oscillations. The oscillations of the payload are measured with three cameras that are fixed to the crane king and are used to track two spherical markers fixed to the payload cable. Based on color and size information, each camera identifies the image points corresponding to the markers. The payload angles are then determined using linear triangulation of the image points. An extended Kalman filter is used for estimation of payload angles and angular velocity. The length of the payload cable is also estimated using a least squares technique with projection. The crane is controlled by a linear cascade controller where the inner control loop is designed to damp out the pendulum oscillation, and the crane tip is controlled by the outer loop. The control variable of the controller is the commanded crane tip acceleration, which is converted to a velocity command using a velocity loop. The performance of the control system is studied experimentally using a scaled laboratory version of a knuckle boom crane.

Citations (17)

Summary

We haven't generated a summary for this paper yet.