Papers
Topics
Authors
Recent
2000 character limit reached

The Weisfeiler-Leman dimension of distance-hereditary graphs (2005.11766v1)

Published 24 May 2020 in math.CO, cs.CC, and cs.DM

Abstract: A graph is said to be distance-hereditary if the distance function in every connected induced subgraph is the same as in the graph itself. We prove that the ordinary Weisfeiler-Leman algorithm correctly tests the isomorphism of any two graphs if one of them is distance-hereditary; more precisely, the Weisfeiler-Leman dimension of the class of finite distance-hereditary graphs is equal to $2$. The previously best known upper bound for the dimension was $7$.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.