Papers
Topics
Authors
Recent
Search
2000 character limit reached

Evaluating Generalisation in General Video Game Playing

Published 22 May 2020 in cs.AI | (2005.11247v1)

Abstract: The General Video Game Artificial Intelligence (GVGAI) competition has been running for several years with various tracks. This paper focuses on the challenge of the GVGAI learning track in which 3 games are selected and 2 levels are given for training, while 3 hidden levels are left for evaluation. This setup poses a difficult challenge for current Reinforcement Learning (RL) algorithms, as they typically require much more data. This work investigates 3 versions of the Advantage Actor-Critic (A2C) algorithm trained on a maximum of 2 levels from the available 5 from the GVGAI framework and compares their performance on all levels. The selected sub-set of games have different characteristics, like stochasticity, reward distribution and objectives. We found that stochasticity improves the generalisation, but too much can cause the algorithms to fail to learn the training levels. The quality of the training levels also matters, different sets of training levels can boost generalisation over all levels. In the GVGAI competition agents are scored based on their win rates and then their scores achieved in the games. We found that solely using the rewards provided by the game might not encourage winning.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.