Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bootstrapping Named Entity Recognition in E-Commerce with Positive Unlabeled Learning (2005.11075v1)

Published 22 May 2020 in cs.CL

Abstract: Named Entity Recognition (NER) in domains like e-commerce is an understudied problem due to the lack of annotated datasets. Recognizing novel entity types in this domain, such as products, components, and attributes, is challenging because of their linguistic complexity and the low coverage of existing knowledge resources. To address this problem, we present a bootstrapped positive-unlabeled learning algorithm that integrates domain-specific linguistic features to quickly and efficiently expand the seed dictionary. The model achieves an average F1 score of 72.02% on a novel dataset of product descriptions, an improvement of 3.63% over a baseline BiLSTM classifier, and in particular exhibits better recall (4.96% on average).

Citations (15)

Summary

We haven't generated a summary for this paper yet.