Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Categories over quantum affine algebras and monoidal categorification (2005.10969v1)

Published 22 May 2020 in math.QA and math.RT

Abstract: Let $U_q'(\mathfrak{g})$ be a quantum affine algebra of untwisted affine $ADE$ type, and $\mathcal{C}{\mathfrak{g}}0$ the Hernandez-Leclerc category of finite-dimensional $U_q'(\mathfrak{g})$-modules. For a suitable infinite sequence $\widehat{w}_0= \cdots s{i_{-1}}s_{i_0}s_{i_1} \cdots$ of simple reflections, we introduce subcategories $\mathcal{C}{\mathfrak{g}}{[a,b]}$ of $\mathcal{C}{\mathfrak{g}}0$ for all $a \le b \in \mathbb{Z}\sqcup{ \pm \infty }$. Associated with a certain chain $\mathfrak{C}$ of intervals in $[a,b]$, we construct a real simple commuting family $M(\mathfrak{C})$ in $\mathcal{C}{\mathfrak{g}}{[a,b]}$, which consists of Kirillov-Reshetikhin modules. The category $\mathcal{C}{\mathfrak{g}}{[a,b]}$ provides a monoidal categorification of the cluster algebra $K(\mathcal{C}{\mathfrak{g}}{[a,b]})$, whose set of initial cluster variables is $[M(\mathfrak{C})]$. In particular, this result gives an affirmative answer to the monoidal categorification conjecture on $\mathcal{C}{\mathfrak{g}}-$ by Hernandez-Leclerc since it is $\mathcal{C}{\mathfrak{g}}{[-\infty,0]}$, and is also applicable to $\mathcal{C}{\mathfrak{g}}0$ since it is $\mathcal{C}_{\mathfrak{g}}{[-\infty,\infty]}$.

Summary

We haven't generated a summary for this paper yet.