Papers
Topics
Authors
Recent
2000 character limit reached

NagE: Non-Abelian Group Embedding for Knowledge Graphs

Published 22 May 2020 in cs.AI, cs.LG, and math.GR | (2005.10956v3)

Abstract: We demonstrated the existence of a group algebraic structure hidden in relational knowledge embedding problems, which suggests that a group-based embedding framework is essential for designing embedding models. Our theoretical analysis explores merely the intrinsic property of the embedding problem itself hence is model-independent. Motivated by the theoretical analysis, we have proposed a group theory-based knowledge graph embedding framework, in which relations are embedded as group elements, and entities are represented by vectors in group action spaces. We provide a generic recipe to construct embedding models associated with two instantiating examples: SO3E and SU2E, both of which apply a continuous non-Abelian group as the relation embedding. Empirical experiments using these two exampling models have shown state-of-the-art results on benchmark datasets.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.