Papers
Topics
Authors
Recent
2000 character limit reached

Bridging the gap between Natural and Medical Images through Deep Colorization

Published 21 May 2020 in cs.CV and physics.med-ph | (2005.10589v2)

Abstract: Deep learning has thrived by training on large-scale datasets. However, in many applications, as for medical image diagnosis, getting massive amount of data is still prohibitive due to privacy, lack of acquisition homogeneity and annotation cost. In this scenario, transfer learning from natural image collections is a standard practice that attempts to tackle shape, texture and color discrepancies all at once through pretrained model fine-tuning. In this work, we propose to disentangle those challenges and design a dedicated network module that focuses on color adaptation. We combine learning from scratch of the color module with transfer learning of different classification backbones, obtaining an end-to-end, easy-to-train architecture for diagnostic image recognition on X-ray images. Extensive experiments showed how our approach is particularly efficient in case of data scarcity and provides a new path for further transferring the learned color information across multiple medical datasets.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.