Graphical continuous Lyapunov models (2005.10483v1)
Abstract: The linear Lyapunov equation of a covariance matrix parametrizes the equilibrium covariance matrix of a stochastic process. This parametrization can be interpreted as a new graphical model class, and we show how the model class behaves under marginalization and introduce a method for structure learning via $\ell_1$-penalized loss minimization. Our proposed method is demonstrated to outperform alternative structure learning algorithms in a simulation study, and we illustrate its application for protein phosphorylation network reconstruction.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.