Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A survey on Adversarial Recommender Systems: from Attack/Defense strategies to Generative Adversarial Networks (2005.10322v2)

Published 20 May 2020 in cs.IR, cs.CR, cs.LG, and cs.MM

Abstract: Latent-factor models (LFM) based on collaborative filtering (CF), such as matrix factorization (MF) and deep CF methods, are widely used in modern recommender systems (RS) due to their excellent performance and recommendation accuracy. However, success has been accompanied with a major new arising challenge: many applications of ML are adversarial in nature. In recent years, it has been shown that these methods are vulnerable to adversarial examples, i.e., subtle but non-random perturbations designed to force recommendation models to produce erroneous outputs. The goal of this survey is two-fold: (i) to present recent advances on adversarial machine learning (AML) for the security of RS (i.e., attacking and defense recommendation models), (ii) to show another successful application of AML in generative adversarial networks (GANs) for generative applications, thanks to their ability for learning (high-dimensional) data distributions. In this survey, we provide an exhaustive literature review of 74 articles published in major RS and ML journals and conferences. This review serves as a reference for the RS community, working on the security of RS or on generative models using GANs to improve their quality.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yashar Deldjoo (46 papers)
  2. Tommaso Di Noia (59 papers)
  3. Felice Antonio Merra (9 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.