Papers
Topics
Authors
Recent
2000 character limit reached

Poisson approximation of Poisson-driven point processes and extreme values in stochastic geometry

Published 20 May 2020 in math.PR | (2005.10116v2)

Abstract: We study point processes that consist of certain centers of point tuples of an underlying Poisson process. Such processes arise in stochastic geometry in the study of exceedances of various functionals describing geometric properties of the Poisson process. We use a coupling of the point process with its Palm version to prove a general Poisson limit theorem. We then combine our general result with the theory of asymptotic shapes of large cells (Kendall's problem) in random mosaics and prove Poisson limit theorems for large cells (with respect to a general size functional) in the Poisson-Voronoi and -Delaunay mosaic. As a consequence, we establish Gumbel limits for the asymptotic distribution of concrete size functionals and specify the rate of convergence. This extends extreme value results from Calka and Chenavier (2014) and Chenavier (2014).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.