Papers
Topics
Authors
Recent
Search
2000 character limit reached

Enhancing Word Embeddings with Knowledge Extracted from Lexical Resources

Published 20 May 2020 in cs.CL and cs.LG | (2005.10048v1)

Abstract: In this work, we present an effective method for semantic specialization of word vector representations. To this end, we use traditional word embeddings and apply specialization methods to better capture semantic relations between words. In our approach, we leverage external knowledge from rich lexical resources such as BabelNet. We also show that our proposed post-specialization method based on an adversarial neural network with the Wasserstein distance allows to gain improvements over state-of-the-art methods on two tasks: word similarity and dialog state tracking.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.