Papers
Topics
Authors
Recent
2000 character limit reached

Repositioning of 8565 existing drugs for COVID-19

Published 20 May 2020 in q-bio.BM and q-bio.QM | (2005.10028v1)

Abstract: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected near 5 million people and led to over 0.3 million deaths. Currently, there is no specific anti-SARS-CoV-2 medication. New drug discovery typically takes more than ten years. Drug repositioning becomes one of the most feasible approaches for combating COVID-19. This work curates the largest available experimental dataset for SARS-CoV-2 or SARS-CoV main protease inhibitors. Based on this dataset, we develop validated machine learning models with relatively low root mean square error to screen 1553 FDA-approved drugs as well as other 7012 investigational or off-market drugs in DrugBank. We found that many existing drugs might be potentially potent to SARS-CoV-2. The druggability of many potent SARS-CoV-2 main protease inhibitors is analyzed. This work offers a foundation for further experimental studies of COVID-19 drug repositioning.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.