Papers
Topics
Authors
Recent
2000 character limit reached

Identifying Statistical Bias in Dataset Replication

Published 19 May 2020 in stat.ML, cs.CV, and cs.LG | (2005.09619v2)

Abstract: Dataset replication is a useful tool for assessing whether improvements in test accuracy on a specific benchmark correspond to improvements in models' ability to generalize reliably. In this work, we present unintuitive yet significant ways in which standard approaches to dataset replication introduce statistical bias, skewing the resulting observations. We study ImageNet-v2, a replication of the ImageNet dataset on which models exhibit a significant (11-14%) drop in accuracy, even after controlling for a standard human-in-the-loop measure of data quality. We show that after correcting for the identified statistical bias, only an estimated $3.6\% \pm 1.5\%$ of the original $11.7\% \pm 1.0\%$ accuracy drop remains unaccounted for. We conclude with concrete recommendations for recognizing and avoiding bias in dataset replication. Code for our study is publicly available at http://github.com/MadryLab/dataset-replication-analysis .

Citations (48)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.