Papers
Topics
Authors
Recent
2000 character limit reached

The Privacy ZEBRA: Zero Evidence Biometric Recognition Assessment

Published 19 May 2020 in cs.CR and eess.AS | (2005.09413v2)

Abstract: Mounting privacy legislation calls for the preservation of privacy in speech technology, though solutions are gravely lacking. While evaluation campaigns are long-proven tools to drive progress, the need to consider a privacy adversary implies that traditional approaches to evaluation must be adapted to the assessment of privacy and privacy preservation solutions. This paper presents the first step in this direction: metrics. We introduce the zero evidence biometric recognition assessment (ZEBRA) framework and propose two new privacy metrics. They measure the average level of privacy preservation afforded by a given safeguard for a population and the worst-case privacy disclosure for an individual. The paper demonstrates their application to privacy preservation assessment within the scope of the VoicePrivacy challenge. While the ZEBRA framework is designed with speech applications in mind, it is a candidate for incorporation into biometric information protection standards and is readily extendable to the study of privacy in applications even beyond speech and biometrics.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.