A semiclassical Birkhoff normal form for constant-rank magnetic fields (2005.09386v2)
Abstract: We consider the semiclassical magnetic Laplacian $\mathcal{L}_h$ on a Riemannian manifold, with a constant-rank and non-vanishing magnetic field $B$. Under the localization assumption that $B$ admits a unique and non-degenerate well, we construct three successive Birkhoff normal forms to describe the spectrum of $\mathcal{L}_h$ in the semiclassical limit $\hbar \rightarrow 0$. We deduce an expansion of all the eigenvalues under a threshold, in powers of $\hbar{1/2}$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.