Papers
Topics
Authors
Recent
Search
2000 character limit reached

Non-Clicks Mean Irrelevant? Propensity Ratio Scoring As a Correction

Published 18 May 2020 in cs.IR and cs.LG | (2005.08480v2)

Abstract: Recent advances in unbiased learning to rank (LTR) count on Inverse Propensity Scoring (IPS) to eliminate bias in implicit feedback. Though theoretically sound in correcting the bias introduced by treating clicked documents as relevant, IPS ignores the bias caused by (implicitly) treating non-clicked ones as irrelevant. In this work, we first rigorously prove that such use of click data leads to unnecessary pairwise comparisons between relevant documents, which prevent unbiased ranker optimization. Based on the proof, we derive a simple yet well justified new weighting scheme, called Propensity Ratio Scoring (PRS), which provides treatments on both clicks and non-clicks. Besides correcting the bias in clicks, PRS avoids relevant-relevant document comparisons in LTR training and enjoys a lower variability. Our extensive empirical evaluations confirm that PRS ensures a more effective use of click data and improved performance in both synthetic data from a set of LTR benchmarks, as well as in the real-world large-scale data from GMail search.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.