Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simple, Scalable, and Stable Variational Deep Clustering (2005.08047v2)

Published 16 May 2020 in cs.LG and stat.ML

Abstract: Deep clustering (DC) has become the state-of-the-art for unsupervised clustering. In principle, DC represents a variety of unsupervised methods that jointly learn the underlying clusters and the latent representation directly from unstructured datasets. However, DC methods are generally poorly applied due to high operational costs, low scalability, and unstable results. In this paper, we first evaluate several popular DC variants in the context of industrial applicability using eight empirical criteria. We then choose to focus on variational deep clustering (VDC) methods, since they mostly meet those criteria except for simplicity, scalability, and stability. To address these three unmet criteria, we introduce four generic algorithmic improvements: initial $\gamma$-training, periodic $\beta$-annealing, mini-batch GMM (Gaussian mixture model) initialization, and inverse min-max transform. We also propose a novel clustering algorithm S3VDC (simple, scalable, and stable VDC) that incorporates all those improvements. Our experiments show that S3VDC outperforms the state-of-the-art on both benchmark tasks and a large unstructured industrial dataset without any ground truth label. In addition, we analytically evaluate the usability and interpretability of S3VDC.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Lele Cao (28 papers)
  2. Sahar Asadi (5 papers)
  3. Wenfei Zhu (1 paper)
  4. Christian Schmidli (1 paper)
  5. Michael Sjöberg (1 paper)
Citations (13)

Summary

We haven't generated a summary for this paper yet.