Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep clustering with fusion autoencoder (2201.04727v2)

Published 11 Jan 2022 in cs.LG

Abstract: Embracing the deep learning techniques for representation learning in clustering research has attracted broad attention in recent years, yielding a newly developed clustering paradigm, viz. the deep clustering (DC). Typically, the DC models capitalize on autoencoders to learn the intrinsic features which facilitate the clustering process in consequence. Nowadays, a generative model named variational autoencoder (VAE) has got wide acceptance in DC studies. Nevertheless, the plain VAE is insufficient to perceive the comprehensive latent features, leading to the deteriorative clustering performance. In this paper, a novel DC method is proposed to address this issue. Specifically, the generative adversarial network and VAE are coalesced into a new autoencoder called fusion autoencoder (FAE) for discerning more discriminative representation that benefits the downstream clustering task. Besides, the FAE is implemented with the deep residual network architecture which further enhances the representation learning ability. Finally, the latent space of the FAE is transformed to an embedding space shaped by a deep dense neural network for pulling away different clusters from each other and collapsing data points within individual clusters. Experiment conducted on several image datasets demonstrate the effectiveness of the proposed DC model against the baseline methods.

Summary

We haven't generated a summary for this paper yet.