Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Massive MIMO Channel Estimation with Low-Resolution Spatial Sigma-Delta ADCs (2005.07752v3)

Published 15 May 2020 in eess.SP, cs.IT, and math.IT

Abstract: We consider channel estimation for an uplink massive multiple-input multiple-output (MIMO) system where the base station (BS) uses an array with low-resolution (1-2 bit) analog-to-digital converters and a spatial Sigma-Delta ($\Sigma\Delta$) architecture to shape the quantization noise away from users in some angular sector. We develop a linear minimum mean squared error (LMMSE) channel estimator based on the Bussgang decomposition that reformulates the nonlinear quantizer model using an equivalent linear model plus quantization noise. We also analyze the uplink achievable rate with maximal ratio combining (MRC), zero-forcing (ZF), and LMMSE receivers and provide a lower bound for the achievable rate with the MRC receiver. Numerical results show superior channel estimation and sum spectral efficiency performance using the $\Sigma\Delta$ architecture compared to conventional 1- or 2-bit quantized massive MIMO systems.

Citations (20)

Summary

We haven't generated a summary for this paper yet.