Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Data-driven Dynamic Multi-objective Optimal Control: An Aspiration-satisfying Reinforcement Learning Approach (2005.07118v4)

Published 14 May 2020 in eess.SY, cs.SY, and math.OC

Abstract: This paper presents an iterative data-driven algorithm for solving dynamic multi-objective (MO) optimal control problems arising in control of nonlinear continuous-time systems. It is first shown that the Hamiltonian functional corresponding to each objective can be leveraged to compare the performance of admissible policies. Hamiltonian-inequalities are then used for which their satisfaction guarantees satisfying the objectives' aspirations. An aspiration-satisfying dynamic optimization framework is then presented to optimize the main objective while satisfying the aspiration of other objectives. Relation to satisficing (good enough) decision-making framework is shown. A Sum-of-Square (SOS) based iterative algorithm is developed to solve the formulated aspiration-satisfying MO optimization. To obviate the requirement of complete knowledge of the system dynamics, a data-driven satisficing reinforcement learning approach is proposed to solve the SOS optimization problem in real-time using only the information of the system trajectories measured during a time interval without having full knowledge of the system dynamics. Finally, two simulation examples are provided to show the effectiveness of the proposed algorithm.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube