Zéro-cycles sur les surfaces de del Pezzo (Variations sur un thème de Daniel Coray)
Abstract: In 1974, D. Coray showed that on a smooth cubic surface with a closed point of degree prime to 3 there exists such a point of degree 1, 4 or 10. We first show how a combination of generisation, specialisation, Bertini theorems and large fields avoids considerations of special cases in his argument. For smooth cubic surfaces with a rational point, we show that any zero-cycle of degree at least 10 is rationally equivalent to an effective cycle. We establish analogues of these results for del Pezzo surfaces of degree 2 and of degree 1. For smooth cubic surfaces without a rational point, we relate the question whether there exists a degree 3 point which is not on a line to the question whether rational points are dense on a del Pezzo surface of degree 1. ---- Une surface cubique lisse qui poss`ede un point ferm\'e de degr\'e premier `a 3 poss`ede un tel point de degr\'e 1, 4 ou 10 (Coray, 1974). Un m\'elange de g\'en\'erisation, de sp\'ecialisation, de th\'eor`emes de Bertini et d'utilisation des corps fertiles donne de la souplesse `a sa m\'ethode. Pour les surfaces cubiques avec un point rationnel, on montre que tout z\'ero-cycle de degr\'e au moins 10 est rationnellement \'equivalent `a un z\'ero-cycle effectif. On \'etablit l'analogue de ces r\'esultats pour les surfaces de del Pezzo de degr\'e 2 et de degr\'e 1. On discute l'existence de points ferm\'es de degr\'e 3 non align\'es sur une surface cubique sans point rationnel. On la relie `a la question de la densit\'e des points rationnels sur une surface de del Pezzo de degr\'e 1.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.