Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Ramsey's theorem for pairs, collection, and proof size (2005.06854v2)

Published 14 May 2020 in math.LO

Abstract: We prove that any proof of a $\forall \Sigma0_2$ sentence in the theory $\mathrm{WKL}0 + \mathrm{RT}2_2$ can be translated into a proof in $\mathrm{RCA}_0$ at the cost of a polynomial increase in size. In fact, the proof in $\mathrm{RCA}_0$ can be found by a polynomial-time algorithm. On the other hand, $\mathrm{RT}2_2$ has non-elementary speedup over the weaker base theory $\mathrm{RCA}*_0$ for proofs of $\Sigma_1$ sentences. We also show that for $n \ge 0$, proofs of $\Pi{n+2}$ sentences in $\mathrm{B}\Sigma_{n+1}+\exp$ can be translated into proofs in $\mathrm{I}\Sigma_{n} + \exp$ at polynomial cost. Moreover, the $\Pi_{n+2}$-conservativity of $\mathrm{B}\Sigma_{n+1} + \exp$ over $\mathrm{I}\Sigma_{n} + \exp$ can be proved in $\mathrm{PV}$, a fragment of bounded arithmetic corresponding to polynomial-time computation. For $n \ge 1$, this answers a question of Clote, H\'ajek, and Paris.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.