Papers
Topics
Authors
Recent
Search
2000 character limit reached

Enhanced Residual Networks for Context-based Image Outpainting

Published 14 May 2020 in eess.IV and cs.CV | (2005.06723v1)

Abstract: Although humans perform well at predicting what exists beyond the boundaries of an image, deep models struggle to understand context and extrapolation through retained information. This task is known as image outpainting and involves generating realistic expansions of an image's boundaries. Current models use generative adversarial networks to generate results which lack localized image feature consistency and appear fake. We propose two methods to improve this issue: the use of a local and global discriminator, and the addition of residual blocks within the encoding section of the network. Comparisons of our model and the baseline's L1 loss, mean squared error (MSE) loss, and qualitative differences reveal our model is able to naturally extend object boundaries and produce more internally consistent images compared to current methods but produces lower fidelity images.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.