Papers
Topics
Authors
Recent
2000 character limit reached

Continuous-time quantum walks in the presence of a quadratic perturbation (2005.06351v4)

Published 13 May 2020 in quant-ph

Abstract: We address the properties of continuous-time quantum walks with Hamiltonians of the form $\mathcal{H}= L + \lambda L2$, being $L$ the Laplacian matrix of the underlying graph and being the perturbation $\lambda L2$ motivated by its potential use to introduce next-nearest-neighbor hopping. We consider cycle, complete, and star graphs because paradigmatic models with low/high connectivity and/or symmetry. First, we investigate the dynamics of an initially localized walker. Then, we devote attention to estimating the perturbation parameter $\lambda$ using only a snapshot of the walker dynamics. Our analysis shows that a walker on a cycle graph is spreading ballistically independently of the perturbation, whereas on complete and star graphs one observes perturbation-dependent revivals and strong localization phenomena. Concerning the estimation of the perturbation, we determine the walker preparations and the simple graphs that maximize the Quantum Fisher Information. We also assess the performance of position measurement, which turns out to be optimal, or nearly optimal, in several situations of interest. Besides fundamental interest, our study may find applications in designing enhanced algorithms on graphs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.