Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Algebraic construction of current operators in integrable spin chains (2005.06242v1)

Published 13 May 2020 in cond-mat.stat-mech, hep-th, and nlin.SI

Abstract: Generalized Hydrodynamics is a recent theory that describes the large scale transport properties of one dimensional integrable models. At the heart of this theory lies an exact quantum-classical correspondence, which states that the flows of the conserved quantities are essentially quasi-classical even in the interacting quantum many body models. We provide the algebraic background to this observation, by embedding the current operators of the integrable spin chains into the canonical framework of Yang-Baxter integrability. Our construction can be applied in a large variety of models including the XXZ spin chains, the Hubbard model, and even in models lacking particle conservation such as the XYZ chain. Regarding the XXZ chain we present a simplified proof of the recent exact results for the current mean values, and explain how their quasi-classical nature emerges from the exact computations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.