Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel Learning of Koopman Eigenfunctions and Invariant Subspaces For Accurate Long-Term Prediction (2005.06138v3)

Published 13 May 2020 in eess.SY, cs.SY, and math.DS

Abstract: We present a parallel data-driven strategy to identify finite-dimensional functional spaces invariant under the Koopman operator associated to an unknown dynamical system. We build on the Symmetric Subspace Decomposition (SSD) algorithm, a centralized method that under mild conditions on data sampling provably finds the maximal Koopman-invariant subspace and all Koopman eigenfunctions in an arbitrary finite-dimensional functional space. A network of processors, each aware of a common dictionary of functions and equipped with a local set of data snapshots, repeatedly interact over a directed communication graph. Each processor receives its neighbors' estimates of the invariant dictionary and refines its estimate by applying SSD with its local data on the intersection of the subspaces spanned by its own dictionary and the neighbors' dictionaries. We identify conditions on the network topology to ensure the algorithm identifies the maximal Koopman-invariant subspace in the span of the original dictionary, characterize its time, computational, and communication complexity, and establish its robustness against communication failures.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Masih Haseli (7 papers)
  2. Jorge Cortés (65 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.