Mega-COV: A Billion-Scale Dataset of 100+ Languages for COVID-19 (2005.06012v4)
Abstract: We describe Mega-COV, a billion-scale dataset from Twitter for studying COVID-19. The dataset is diverse (covers 268 countries), longitudinal (goes as back as 2007), multilingual (comes in 100+ languages), and has a significant number of location-tagged tweets (~169M tweets). We release tweet IDs from the dataset. We also develop and release two powerful models, one for identifying whether or not a tweet is related to the pandemic (best F1=97%) and another for detecting misinformation about COVID-19 (best F1=92%). A human annotation study reveals the utility of our models on a subset of Mega-COV. Our data and models can be useful for studying a wide host of phenomena related to the pandemic. Mega-COV and our models are publicly available.
- Muhammad Abdul-Mageed (102 papers)
- AbdelRahim Elmadany (33 papers)
- El Moatez Billah Nagoudi (31 papers)
- Dinesh Pabbi (1 paper)
- Kunal Verma (4 papers)
- Rannie Lin (1 paper)