Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CML-COVID: A Large-Scale COVID-19 Twitter Dataset with Latent Topics, Sentiment and Location Information (2101.12202v1)

Published 28 Jan 2021 in cs.SI, cs.CY, and cs.HC

Abstract: As a platform, Twitter has been a significant public space for discussion related to the COVID-19 pandemic. Public social media platforms such as Twitter represent important sites of engagement regarding the pandemic and these data can be used by research teams for social, health, and other research. Understanding public opinion about COVID-19 and how information diffuses in social media is important for governments and research institutions. Twitter is a ubiquitous public platform and, as such, has tremendous utility for understanding public perceptions, behavior, and attitudes related to COVID-19. In this research, we present CML-COVID, a COVID-19 Twitter data set of 19,298,967 million tweets from 5,977,653 unique individuals and summarize some of the attributes of these data. These tweets were collected between March 2020 and July 2020 using the query terms coronavirus, covid and mask related to COVID-19. We use topic modeling, sentiment analysis, and descriptive statistics to describe the tweets related to COVID-19 we collected and the geographical location of tweets, where available. We provide information on how to access our tweet dataset (archived using twarc).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hassan Dashtian (7 papers)
  2. Dhiraj Murthy (11 papers)
Citations (8)