Papers
Topics
Authors
Recent
2000 character limit reached

Scalable First-Order Methods for Robust MDPs

Published 11 May 2020 in math.OC and cs.LG | (2005.05434v5)

Abstract: Robust Markov Decision Processes (MDPs) are a powerful framework for modeling sequential decision-making problems with model uncertainty. This paper proposes the first first-order framework for solving robust MDPs. Our algorithm interleaves primal-dual first-order updates with approximate Value Iteration updates. By carefully controlling the tradeoff between the accuracy and cost of Value Iteration updates, we achieve an ergodic convergence rate of $O \left( A{2} S{3}\log(S)\log(\epsilon{-1}) \epsilon{-1} \right)$ for the best choice of parameters on ellipsoidal and Kullback-Leibler $s$-rectangular uncertainty sets, where $S$ and $A$ is the number of states and actions, respectively. Our dependence on the number of states and actions is significantly better (by a factor of $O(A{1.5}S{1.5})$) than that of pure Value Iteration algorithms. In numerical experiments on ellipsoidal uncertainty sets we show that our algorithm is significantly more scalable than state-of-the-art approaches. Our framework is also the first one to solve robust MDPs with $s$-rectangular KL uncertainty sets.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.