Papers
Topics
Authors
Recent
2000 character limit reached

Clasper Concordance, Whitney towers and repeating Milnor invariants

Published 11 May 2020 in math.GT | (2005.05381v2)

Abstract: We show that for each $k\in\mathbb{N}$, a link $L\subset S3$ bounds a degree $k$ Whitney tower in the 4-ball if and only if it is \emph{$C_k$-concordant} to the unlink. This means that $L$ is obtained from the unlink by a finite sequence of concordances and degree $k$ clasper surgeries. In our construction the trees associated to the Whitney towers coincide with the trees associated to the claspers. As a corollary to our previous obstruction theory for Whitney towers in the 4-ball, it follows that the $C_k$-concordance filtration of links is classified in terms of Milnor invariants, higher-order Sato-Levine and Arf invariants. Using a new notion of $k$-repeating twisted Whitney towers, we also classify a natural generalization of the notion of link homotopy, called twisted \emph{self $C_k$-concordance}, in terms of $k$-repeating Milnor invariants and $k$-repeating Arf invariants.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.