Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Ubiquity of entropies of intermediate factors (2005.05198v2)

Published 11 May 2020 in math.DS

Abstract: We consider topological dynamical systems $(X,T)$, where $X$ is a compact metrizable space and $T$ denotes an action of a countable amenable group $G$ on $X$ by homeomorphisms. For two such systems $(X,T)$ and $(Y,S)$ and a factor map $\pi : X \rightarrow Y$, an intermediate factor is a topological dynamical system $(Z,R)$ for which $\pi$ can be written as a composition of factor maps $\psi : X \rightarrow Z$ and $\varphi : Z \rightarrow Y$. In this paper we show that for any countable amenable group $G$, for any $G$-subshifts $(X,T)$ and $(Y,S)$, and for any factor map $ \pi :X \rightarrow Y$, the set of entropies of intermediate subshift factors is dense in the interval $[h(Y,S), h(X,T)]$. As a corollary, we also prove that if $(X,T)$ and $(Y,S)$ are zero-dimensional $G$-systems, then the set of entropies of intermediate zero-dimensional factors is equal to the interval $[h(Y,S), h(X,T)]$. Our proofs rely on a generalized Marker Lemma that may be of independent interest.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.