Papers
Topics
Authors
Recent
2000 character limit reached

A Deep Learning Approach for Automatic Detection of Fake News

Published 11 May 2020 in cs.CL and cs.LG | (2005.04938v1)

Abstract: Fake news detection is a very prominent and essential task in the field of journalism. This challenging problem is seen so far in the field of politics, but it could be even more challenging when it is to be determined in the multi-domain platform. In this paper, we propose two effective models based on deep learning for solving fake news detection problem in online news contents of multiple domains. We evaluate our techniques on the two recently released datasets, namely FakeNews AMT and Celebrity for fake news detection. The proposed systems yield encouraging performance, outperforming the current handcrafted feature engineering based state-of-the-art system with a significant margin of 3.08% and 9.3% by the two models, respectively. In order to exploit the datasets, available for the related tasks, we perform cross-domain analysis (i.e. model trained on FakeNews AMT and tested on Celebrity and vice versa) to explore the applicability of our systems across the domains.

Citations (31)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.