Papers
Topics
Authors
Recent
2000 character limit reached

Posterior Control of Blackbox Generation

Published 10 May 2020 in cs.CL, cs.AI, and cs.LG | (2005.04560v1)

Abstract: Text generation often requires high-precision output that obeys task-specific rules. This fine-grained control is difficult to enforce with off-the-shelf deep learning models. In this work, we consider augmenting neural generation models with discrete control states learned through a structured latent-variable approach. Under this formulation, task-specific knowledge can be encoded through a range of rich, posterior constraints that are effectively trained into the model. This approach allows users to ground internal model decisions based on prior knowledge, without sacrificing the representational power of neural generative models. Experiments consider applications of this approach for text generation. We find that this method improves over standard benchmarks, while also providing fine-grained control.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.