Papers
Topics
Authors
Recent
2000 character limit reached

A Finite Horizon Optimal Stochastic Impulse Control Problem with A Decision Lag

Published 10 May 2020 in math.OC and math.PR | (2005.04555v2)

Abstract: This paper studies an optimal stochastic impulse control problem in a finite horizon with a decision lag, by which we mean that after an impulse is made, a fixed number units of time has to be elapsed before the next impulse is allowed to be made. The continuity of the value function is proved. A suitable version of dynamic programming principle is established, which takes into account the dependence of state process on the elapsed time. The corresponding Hamilton-Jacobi-Bellman (HJB) equation is derived, which exhibit some special feature of the problem. The value function of this optimal impulse control problem is characterized as the unique viscosity solution to the corresponding HJB equation. An optimal impulse control is constructed provided the value function is given. Moreover, a limiting case with the waiting time approaching $0$ is discussed.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.