Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Site Percolation on Planar Graphs (2005.04529v2)

Published 9 May 2020 in math.PR

Abstract: We prove that for a non-amenable, locally finite, connected, transitive, planar graph with one end, any automorphism invariant site percolation on the graph does not have exactly 1 infinite 1-cluster and exactly 1 infinite 0-cluster a.s. If we further assume that the site percolation is insertion-tolerant and a.s.~there exists a unique infinite 0-cluster, then a.s.~there are no infinite 1-clusters. The proof is based on the analysis of a class of delicately constructed interfaces between clusters and contours. Applied to the case of i.i.d.~Bernoulli site percolation on infinite, connected, locally finite, transitive, planar graphs, these results solve two conjectures of Benjamini and Schramm (Conjectures 7 and 8 in \cite{bs96}) in 1996.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)