Vehicle Re-Identification Based on Complementary Features
Abstract: In this work, we present our solution to the vehicle re-identification (vehicle Re-ID) track in AI City Challenge 2020 (AIC2020). The purpose of vehicle Re-ID is to retrieve the same vehicle appeared across multiple cameras, and it could make a great contribution to the Intelligent Traffic System(ITS) and smart city. Due to the vehicle's orientation, lighting and inter-class similarity, it is difficult to achieve robust and discriminative representation feature. For the vehicle Re-ID track in AIC2020, our method is to fuse features extracted from different networks in order to take advantages of these networks and achieve complementary features. For each single model, several methods such as multi-loss, filter grafting, semi-supervised are used to increase the representation ability as better as possible. Top performance in City-Scale Multi-Camera Vehicle Re-Identification demonstrated the advantage of our methods, and we got 5-th place in the vehicle Re-ID track of AIC2020. The codes are available at https://github.com/gggcy/AIC2020_ReID.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.