Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A new obstruction for normal spanning trees (2005.04150v1)

Published 6 May 2020 in math.CO

Abstract: In a paper from 2001 (Journal of the LMS), Diestel and Leader offered a proof that a connected graph has a normal spanning tree if and only if it does not contain a minor from two specific forbidden classes of graphs, all of cardinality $\aleph_1$. Unfortunately, their proof contains a gap, and their result is incorrect. In this paper, we construct a third type of obstruction: an $\aleph_1$-sized graph without a normal spanning tree that contains neither of the two types described by Diestel and Leader as a minor. Further, we show that any list of forbidden minors characterising the graphs with normal spanning trees must contain graphs of arbitrarily large cardinality.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.