Papers
Topics
Authors
Recent
2000 character limit reached

Local times and sample path properties of the Rosenblatt process

Published 8 May 2020 in math.PR, math.FA, and math.SP | (2005.04032v1)

Abstract: Let $Z = (Z_t)_{t \geq 0}$ be the Rosenblatt process with Hurst index $H \in (1/2, 1)$. We prove joint continuity for the local time of $Z$, and establish H\"older conditions for the local time. These results are then used to study the irregularity of the sample paths of $Z$. Based on analogy with similar known results in the case of fractional Brownian motion, we believe our results are sharp. A main ingredient of our proof is a rather delicate spectral analysis of arbitrary linear combinations of integral operators, which arise from the representation of the Rosenblatt process as an element in the second chaos.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.