Papers
Topics
Authors
Recent
2000 character limit reached

Multiscale Bayesian Survival Analysis

Published 6 May 2020 in math.ST and stat.TH | (2005.02889v3)

Abstract: We consider Bayesian nonparametric inference in the right-censoring survival model, where modeling is made at the level of the hazard rate. We derive posterior limiting distributions for linear functionals of the hazard, and then for `many' functionals simultaneously in appropriate multiscale spaces. As an application, we derive Bernstein-von Mises theorems for the cumulative hazard and survival functions, which lead to asymptotically efficient confidence bands for these quantities. Further, we show optimal posterior contraction rates for the hazard in terms of the supremum norm. In medical studies, a popular approach is to model hazards a priori as random histograms with possibly dependent heights. This and more general classes of arbitrarily smooth prior distributions are considered as applications of our theory. A sampler is provided for possibly dependent histogram posteriors. Its finite sample properties are investigated on both simulated and real data experiments.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.