Papers
Topics
Authors
Recent
2000 character limit reached

A robust algorithm for explaining unreliable machine learning survival models using the Kolmogorov-Smirnov bounds

Published 5 May 2020 in cs.LG and stat.ML | (2005.02249v1)

Abstract: A new robust algorithm based of the explanation method SurvLIME called SurvLIME-KS is proposed for explaining machine learning survival models. The algorithm is developed to ensure robustness to cases of a small amount of training data or outliers of survival data. The first idea behind SurvLIME-KS is to apply the Cox proportional hazards model to approximate the black-box survival model at the local area around a test example due to the linear relationship of covariates in the model. The second idea is to incorporate the well-known Kolmogorov-Smirnov bounds for constructing sets of predicted cumulative hazard functions. As a result, the robust maximin strategy is used, which aims to minimize the average distance between cumulative hazard functions of the explained black-box model and of the approximating Cox model, and to maximize the distance over all cumulative hazard functions in the interval produced by the Kolmogorov-Smirnov bounds. The maximin optimization problem is reduced to the quadratic program. Various numerical experiments with synthetic and real datasets demonstrate the SurvLIME-KS efficiency.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.