Papers
Topics
Authors
Recent
2000 character limit reached

From Image Collections to Point Clouds with Self-supervised Shape and Pose Networks

Published 5 May 2020 in cs.CV | (2005.01939v1)

Abstract: Reconstructing 3D models from 2D images is one of the fundamental problems in computer vision. In this work, we propose a deep learning technique for 3D object reconstruction from a single image. Contrary to recent works that either use 3D supervision or multi-view supervision, we use only single view images with no pose information during training as well. This makes our approach more practical requiring only an image collection of an object category and the corresponding silhouettes. We learn both 3D point cloud reconstruction and pose estimation networks in a self-supervised manner, making use of differentiable point cloud renderer to train with 2D supervision. A key novelty of the proposed technique is to impose 3D geometric reasoning into predicted 3D point clouds by rotating them with randomly sampled poses and then enforcing cycle consistency on both 3D reconstructions and poses. In addition, using single-view supervision allows us to do test-time optimization on a given test image. Experiments on the synthetic ShapeNet and real-world Pix3D datasets demonstrate that our approach, despite using less supervision, can achieve competitive performance compared to pose-supervised and multi-view supervised approaches.

Citations (31)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.